Support Vector Machines for TCP traffic classification

نویسندگان

  • Alice Este
  • Francesco Gringoli
  • Luca Salgarelli
چکیده

Support Vector Machines (SVM) represent one of the most promising Machine Learning (ML) tools that can be applied to the problem of traffic classification in IP networks. In the case of SVMs, there are still open questions that need to be addressed before they can be generally applied to traffic classifiers. Having being designed essentially as techniques for binary classification, their generalization to multi-class problems is still under research. Furthermore, their performance is highly susceptible to the correct optimization of their working parameters. In this paper we describe an approach to traffic classification based on SVM. We apply one of the approaches to solving multi-class problems with SVMs to the task of statistical traffic classification, and describe a simple optimization algorithm that allows the classifier to perform correctly with as little training as a few hundred samples. The accuracy of the proposed classifier is then evaluated over three sets of traffic traces, coming from different topological points in the Internet. Although the results are relatively preliminary, they confirm that SVM-based classifiers can be very effective at discriminating traffic generated by different applications, even with reduced training set sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In-the-Dark Network Traffic Classification Using Support Vector Machines

This work addresses the problem of in-the-dark traffic classification for TCP sessions, an important problem in network management. An innovative use of support vector machines (SVMs) with a spectrum representation of packet flows is demonstrated to provide a highly accurate, fast, and robust method for classifying common application protocols. The use of a linear kernel allows for an analysis ...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Networks

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2009